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Reducible relativistic wave equations 

M A K Khalilt 
Center for Particle Theory, Department of Physics, University of Texas, Austin, Texas 
78712. USA 

Received 14 August 1978, in final form 2 October 1978 

Abstract. The relativistic wave equations considered in this study are of the form (-4. a + 
m)$(x )=O,  and describe a unique mass m and spin s with 2(2s+1)  independent 
components. Furthermore, their matrices form a reducible, but not necessarily decom- 
posable, set over the representation space of the Lorentz group. It will be shown that such 
reducible equations are dynamically equivalent to simpler irreducible equations: (-ip . a + 
m ) b ( x )  = 0 where the p, can be constructed from the rLL of the original equation. The 0, 
form the irreducible ‘core‘ of the original equation. 

The external field interactions for reducible wave equations in general are also studied. 
It will be shown that if the external fields do not introduce any new independent 
components into the equation and if the interactions are made up of the r-matrices 
contracted over the external potentials, then such interactions can be studied as the same 
type of interactions of the irreducible p-equation. Thus the dynamical equivalence of the 
free r and p equations extends to most interactions of interest. The results of the study 
show that the number of theories available which can lead to different physical predictions is 
significantly restricted. 

1. Introduction 

An extensively studied class of relativistic wave equations that can describe particles of 
any spin consists of equations that are of the form (Gelfand et a1 1963, Naimark 1964, 
Corson 1953): 

where G(x) is an N-component wavefunction and the T, are N x N numerical matrices 
over C. 

The requirements of special relativity are satisfied by making equation (1.1) 
manifestly Lorentz covariant. More specifically one requires that there exist an N x N 
reducible matrix representation, A + T(A), of SL(2, C) (the universal covering group of 
the Lorentz group) such that the wavefunction $(x) transforms as: 

cL’(x’) = T(A)cL(x) (1.2) 

and 

a, = h,”a, (1.3) 
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which means that T, must satisfy 

T ( A ) r , T ( A ) - ’  = A,”T,. (1.4) 

It has been assumed that m > 0 is a multiple of the N x N identity matrix IN. 
Originally it did not seem necessary to use such a general starting point for the 

relativistic theory of particles with spin. The simplest possible free field equations 
incorporating a given set of physical demands seemed perfectly adequate, as exem- 
plified by the Dirac spin-; equation and the Duffin-Kemmer spin-0 and spin-1 
equations. For spins >1, however, the simplest free equations ran into a variety of 
inconsistencies, especially when one tried to introduce external field interactions into 
the theory. These difficulties are reviewed in various papers on the subject (Wightman 
1968, 1972), and will not be explicitly considered here. This situation necessitated the 
study of more complex equations that could describe spin s particles, and in general to 
study all possible wave equations for a given spin within the general framework of 
relativistic quantum mechanics. It was hoped that one would either find a class of 
consistent equations or a method for avoiding the inconsistencies. ?he classes of 
equations that become available under this program were very large; among them being 
reducible, but possibly indecomposable, wave equations. It was hoped that these could 
provide a mechanism to avoid the difficulties of the external field problem. This paper 
shows that they will not do so, and more strongly that in relativistic quantum mechanics, 
reducible equations in the present domains of interest do not add to the physics 
contained in irreducible theories. 

Some of the equations of the type (1.1) have reducible r,-matrices. Such equations 
will be called reducible equations, and the subclass of all such equations will be denoted 
C ( R ) .  

The matrices T r  can be regarded as a set of linear transformations on an N- 
dimensional linear space R ( N )  (the representation space of A + T(]l)): 

r: R ( N )  + R ( N )  

r E fro, rl, r2, r31 
T r  is a reducible set if and only if there exists a proper subspace R 1  c R ( N )  such that 

TR1 G RI 

for every r in {re]& = 0, 1,2,3}; otherwise it is an irreducible set over R ( N ) .  

Definition 1 : An equation of the type (1.1) is a reducible equation if and only if r r  is a 
reducible set. All reducible equations belong to C(R) .  

Notice that r,, may be reducible but not decomposable. The set r r  is decomposable 
if the complement of the subspace RI ,  R‘, c R ( N )  is also an invariant subspace of each 
T in {r,} (Wightman 1968). The term reducible in this study is always to be taken to 
include both decomposable and indecomposable I?, sets. 

In general reducible wave equations have not been studied in detail as pointed out 
by Wightman (1968). 

There is another subclass of wave equations of the type ( l - l ) ,  denoted C ( E )  called 
dynamically equivalent equations. Equations in this subclass have the property that in 
the free case a given equation (1.1) reduces to a smaller and simpler wave equation of 
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the same general form: 

( - $ . a + m ) 4 ( x ) = O .  
This simpler p-equation is completely equivalent to the original r-equation and can be 
derived from it. If one considers a physical system described by an equation of the form 
(1.1) interacting with an external field so that the field does not create any new 
independent components in the r-equation, then once again the r-equation can be 
studied in terms of a possibly different external field interaction of the p-equation. 

The equations of primary interest in this study are those which belong to both C ( E )  
and C(R), or equivalently to the subclass C(E,  R )  = C ( R )  fl C(E) .  These equations 
are not only reducible but they also have the desired property of being equivalent to 
simpler equations. One may wonder about the conditions under which a reducible 
equation is forced to be in C ( E )  as well. It will be shown in this study that all reducible 
wave equations that describe a unique mass m and a unique spin s with the minimum 
number of independent components required to describe both positive and negative 
energy states, i.e. 2(2s + 1) independent components, are necessarily in C(E) .  Some 
authors have inadvertently used such reducible equations in situations where their 
theories are equivalent to simpler theories (Capri 1972; Amar and Dozzio 1972). 

The external field interactions of equations in C(E,  R )  will also be studied in this 
paper to show how the r-equations continue to be related to the &equations. 

In order to summarise the classification of wave equations as it applies to the 
discussion in this paper one may consider: 

rC7 
C ( R ,  E)- [C(R)] ___* C ( - R )  + C ( - R ,  -E)  

J. J. 
C ( R ,  -E)  C ( - R ,  E )  

In this diagram the arrows indicate inverse inclusions. For example: 

C + C ( R )  = C ( R )  c C 

C is the class of all relativistic wave equations of the type (1.1). The letters (. . .) 
separating the various subclasses indicate special properties of the wave equations: 
R = reducible rF,  E = equations equivalent to simpler equations, and the tilde denotes 
negation. Thus C ( - R )  is the subclass of wave equations with irreducible rF matrices. 
None of the subclasses are empty and all inclusions are proper, i.e. no two classes are 
exactly the same. Further subdivisions are also possible but not relevant to this study, 
however, it should be pointed out that C ( R ,  E) contains the entire class of barnacled 
wave equations (Khalil 1974, 1978). 

In the next two sections the notions and consequences of dynamical equivalence and 
reducibility, as these terms are used in this study, will be further defined and studied. 

2. Dynamically equivalent equations 

2.1. General definitions-free fields 

A relativistic wave equation of the form (1.1) is invariant under a representation of 
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SL(2, C), A +  T ( A )  where 

In (2.1) a, is an integer specifying the multiplicity of the irreducible representation 
T;(A) in T ( A ) .  

For later convenience wave equations will be studied in completely reduced bases 
(CRB’S) (Hurley and Sudarshan 1974). A CRB is any basis where T ( A )  is block diagonal 
and each block forms an irreducible representation of SL(2, C). 

In a CRB corresponding to (2.1) r+ can be written in SL(2, C) block form as (table 1): 

Table 1 

r,, = 

where r,’’ # O j  TI ts TI, i.e. TI interlocks with T,, which means that if A +  Tl(A) is 
specified by the integers or half odd integers (li, mi) ,  then Ti T, if and only if 1, = I lk$ 
and m, = m, *$. r+” is an a, x a, block matrix representing the connections of the a ,  
copies of the representation TI with the a, copies of the representation T,. 

Definition 2: If there exists a CRB where r+ can be partitioned along SL(2, C) blocks 
into a form (table 2): 

Table 2 

where the p, and N, are square matrices, and one has, identically in a: 
(i) det[-iN . d + m ] = m # 0 

(ii) X .  a(-iN. + m Y .  a = o 
then the r-equation is said to belong to C ( E ) ,  and is called a dynamically equivalent 
equation. 

In the partition of r, above 
k 

r = l  
T“’(A) = @ ,a;T(A) 
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k 

, = 1  
T(”(A) = @ b,T,(A) 

T ( R )  = T‘”@ T‘2’, ai = a, + b,. 

In the free field case the dynamical eqivalence of the r and &equations can be 
demonstrated as follows (table 3): 

Table 3 

(-ip. d+m)c$(x ) -  

-iY. &$(x)+(-iN 

(- i@.  d + m)q5(x) - 

x. do(x)  = 0 

d + m ) o ( x )  = 0 
e (2.2) 

e (2.3) 

e (2.4) 

The independent components of $(x) are contained in ~$(x) ,  and these satisfy the 
simpler first order @-equation, whereas the w ( x )  are dependent components given 
entirely in terms of 4 ( x )  or equivalently can be constructed from the knowledge of 
4(x ) .  One can start with the first equation in (2.4), define o ( x )  by the second equation 
in (2.4), and reconstruct the r-equation. 

There are two general comments that are relevant here. First, the statement of the 
two conditions on rG (definition 2), for the r-equation to belong to C ( E ) ,  are not in 
their simplest form. Conditions (i) and (ii) are satisfied if and only if, these conditions 
hold for CL = 0 (or in the rest frame). In other words: 

(i) det(Nopo - m )  # 0 and 
(ii) ~ o ( ~ ~ p ~  - m I-’ Y O  = o 

imply, by transforming to an arbitrary Lorentz frame, that det(N. p - m )  # 0 and 
X .  p ( N .  p - m)-’ Y .  p = 0. Thus in practice one may consider these properties only for 
To, to show that the corresponding equation is in C ( E ) .  

Secondly, when an equation is in C ( R ) ,  which is the case of interest here, condition 
(i)  can be satisfied if and only if No is a nilpotent matrix (Khalil 1976, Sudarshan et a1 
1977); (then N .  d is nilpotent due to Lorentz covariance). 

Now this type of a dynamical equivalence has strong implicationsfor the relationship 
between the r and the &equations when external field interactions are introduced, as 
one would suspect from (2.4). 

2.2. External field interactions for C ( E )  

In general the interactions of a physical system described by (1 .1)  with a covariant 
external field (Wightman 1972) can be written as: 

(-ir,d” + m ) q ( x )  + B ( x ) q ( x )  = 0 ( 2 . 5 )  
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where B ( x )  is an N x N  matrix of functions and (2.5) is again invariant under T ( A ) ;  i.e. 
not only does (1.2) still hold but 

T(A)B(x)T(A)- ’  = B ( A x )  (2.6) 

T ( A ) + V T ( A )  = 

If an 7 matrix satisfying 

7”7 

( 7 L ) +  = 7r.U 

exists for the free case, one may choose the B(x)  such that 

(vB ( x  1)’ 7B ( x  ) 

so the useful properties of the 7-matrix are preserved in the interacting case. 

minimal coupling interaction; then equation (2.5) is (table 4): 
As an example consider the special case where No = 0 and B(x)  = -er,A”(x)-the 

where D, = a, - ieA,(x). 
Now table 4 is: 

or 

[-i/?. D + m +i~ /2mX,Y,F~”’ (x ) ]~ . (x )  = 0 

n ( x )  = (i/m) Y .  D@(x)  

(2.7) 

F,u(x) = a[,Aul(x) 

A[,BUi = A,Bu - A B ,  

The following notation will be used 

A{,Bv, = A,Bv + A B ,  

Recall that X,, Yyl = 0 by construction. 
One notes that in this particular case the minimal coupling of the l7-equation can be 

studied as a more complicated coupling of the &equation. The situation for reducible 
equations in C(R,  E )  is much simpler. In that case a given type of a coupling of the 
r-equation yields the same type of a coupling for the /?-equation to which the 
r-equation reduces in the free case. 

When either NO # 0 (even though it is nilpotent) or when B ( x )  is a more complicated 
interaction than minimal coupling, the n(x) may gain new independent components, 
and may no longer be soluble in terms of @ ( x ) .  This problem will be considered later in 
the context of C(R,  E ) .  
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3. Reducible equations 

In this section the properties of reducible equations (decomposable or indecomposable) 
are studied in more detail leading to the main result of this paper. This result connects 
the classes C ( R )  and C ( E )  under prescribed conditions. The consequences of the 
connection are studied in 0 4. 

If R,, j = 1, . . . , I  are all the proper invariant subspaces of { rF} ,  then one can define a 
maximal invariant subspace Ro of {r,} that is proper. 

In the case when {r,} is an indecomposable set, the direct sum of any combination of 
the proper invariant subspaces of {r,} is again a proper invariant subspace. Therefore 
Ro = @j=l Rj  defines a maximal invariant proper subspace, where j ranges over all the 
proper invariant subspaces of {r,}. 

When {r,} is decomposable, R ( N )  can be written as a direct sum of proper invariant 
subspaces of {r,}; thus the direct sum of all the proper invariant sbuspaces of {r,} is 
R ( N )  itself. In this case one considers the smallest proper invariant subspace of {r,} 
whose complement is also invariant. This complement is the maximal invariant 
subspace Ro of {r,}. 

A subspace Ro is an SL(2, C) subspace if TRo c Ro, where T are the matrices of the 
SL(2, C) representation under which r', transform. 

Before considering the main theorem a lemma is needed, which is proven elsewhere 
(Khalil 1976, Sudarshan et a1 1977). 

I 

Lemma : Suppose R o c  R ( N )  is the maximal invariant subspace of {r,} then Ro is an 
SL(2, C) subspace of R ( N ) .  As a corollary to the lemma it can be noted that since all 
finite dimensional representations of SL(2, C) are decomposable, the linear comple- 
ment of Ro can also be chosen to be an SL(2, C) subspace of R ( N ) .  

Theorem: Suppose (-ir. a +  m)i)(x)  = 0 is a relativistic wave equation which trans- 
forms under a representation of SL(2, C), A+T(A) and satisfies the following two 
conditions: 

(i) {r,} is reducible set, or equivalently the equation belongs to C ( R ) :  and 
(ii) the equation describes a unique mass m, and spin s with 2(2s + 1) independent 

Such an equation is then in C(E,  R ) =  C ( R ) n C ( E )  and is therefore 
components. 

dynamically equivalent to a simpler equation. 

Proof: Only maximal invariant subspaces will be considered. The property of reduci- 
bility is basis independent, so one may choose any convenient basis of R ( N )  to work in. 

Now the reducibility of {r,} implies that one may choose a basis where rw have one 
of the following forms (table 5): 

where p, is an n x n matrix, n being the dimension of Ro in ( a )  and n = N-dim Ro in (b ) .  
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Furthermore, the partitions of T, in table 5 are along SL(2, C )  blocks as a direct 
consequence of the lemma, so without loss of generality the r, in table 5 can be 
assumed to be in a CRB. In case the T, of table 5 are not in a CRB, they can be put in a 
CRB by a similarity transformion via V, i.e. r, + Vr,V-', where V is (table 6):  

Table 6 

in block form, and this does not change the zero blocks in each of the equations of table 
5. At this stage form (6) is distinguished from form ( a )  in table 5 only for later 
convenience. 

When the r,, transform under 
K 

/ = 1  
T ( N  = CB a,T,(A) 

then the p, transform under 

or symbolically (table 7) :  

Table 7 
*'a' p 1 1  

T'O' 0 T"' = T(.i) 

and similarly for the other two forms in table 5 .  Thus p, connect the interlocking 
representations in T(''(A). The three conditions in table 5 together take into account 
both the cases where the complement of the subspace Ro = R ( N )  is again invariant 
under {r,} (case ( c ) )  and where it is not (cases ( a )  and ( b ) ) ,  thus covering both 
decomposable and indecomposable {r,} sets. 

Table 5 gives a natural partition of r, into SL(2, C) blocks where in order to show 
that the equation belongs to C ( E )  one needs to verify only that det(-iN. a +  m )  = m p  # 
0 because once that holds the second condition X .  a(-iN. a +  m)-' Y .  a = 0 is automa- 
tically satisfied since either X ,  or Y, or both are zero for reducible equations. 

In the remainder of the proof for this theorem we want to use the requirement of 
unique mass, unique spin s and 2(2s+1) independent components to prove that 
de t ( - iN .a+m)=mP#O.  
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Since the equation describes a unique mass, To (in any of the above forms) has the 
minimal polynomial (Harish-Chandra) 

ron(r$ 1) = o 
for some n > 0. 

To has the eigenvalues (0, +1 and -l), and there are (2s + 1) eigenvalues +1 and 
(2s + 1) eigenvalues -1 since there are 2(2s + 1) independent components, (2s + 1) 
describing the positive energy solutions and (2s + 1) describing the negative energy 
solutions. The eigenvalues of the matrices of the type of table 5 are determined 
completely by the eigenvalues of Po and No. Therefore either Po or No has at least one 
+1 eigenvalue. Assume, without loss of generality, that Po does. If Po has one +1 
eigenvalue then it has all (2s + 1) eigenvalues + 1. This fact is a characteristic of To in a 
CRB, since +1 (and also -1) eigenvalues arise in the connection of some Ti(A) with a 
T, (A) ,  both irreducible representations of SL(2, e), and hence enters into the To as 
1 ( 2 s + ~ ) ,  the (2s + 1) X (2s + 1) identity matrix. Furthermore, since no irreducible 
representation of SL(2, C) can interlock with itself, the diagonal blocks of r0 are all 
identically zero in a CRB. This implies 

Tr(To) = Tr(Po) = Tr(No) = 0. 

Therefore if Po has (2s + 1) eigenvalues +1 it must also have (2s + 1) eigenvalues -1, 
which in turn implies that No has only zero eigenvalues and thus No is nilpotent. If No is 
nilpotent then 

[NO]' = 0 

for some integer 1. Therefore by Lorentz invariance: 

[-iN. 81' = o 
Because of this equation for N .  a, det(-iN. a+m)=m" (when No has n rows and 
columns) # 0 since m # 0, (m > 0). 

Alternatively one may consider the equation in the rest-frame: 

( r o + ~ l n ) c / l o = O  €=* l  

where c/lo are the rest frame solutions. Now the nilpotency of NO implies that 
det(No - €1") = *1# 0 or det(Nopo - m )  # 0 which by Lorentz invariance implies that 
det(N. p - m) # 0. 

If No had a non-zero eigenvalue then by the same arguments PO would be nilpotent. 
For notational convenience No always denotes the nilpotent submatrix, so this situa- 
tion, if it arises in table 5 case ( a )  should be written: 

Table 9 
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but this case is already covered by table 5 since the r o ( a )  above can be rewritten as: 

If we start with either table 5 ( b )  or (c) the same arguments go through without 
change to prove that det(N.  p - m )  f 0.  

4. Implications and discussion 

Two general points can now be made regarding reducible equations. 
( i )  All reducible equations have ru that can be put into the form of table 5 in a CRB. 

This form is not sufficient to guarantee that the equation is in C ( E )  and it is the property 
of being in C ( E )  that leads to the simplification of the theory. On the other hand if an 
equation in C ( R )  (one of the forms of table 5) has the property that (NO - In)-' exists or 
equivalently det(-iN. d + m ) # O  then the equation is in C ( E ) .  Now for a given 
equation in C ( R )  the property that det(-iN. d + m )  # 0 is in general not true. However, 
it has been proven that if one requires the given equation to describe a unique mass m 
and spin s with 2(2s + 1) independent components, then det(-iN. a +  m )  # 0; and the 
equation is in C ( E ) .  The implication of the theorem is that if a reducible equation is not 
equivalent to a simpler wave equation then it cannot describe a unique spin, or unique 
mass, or has more than 2 ( 2 s  + 1) independent components, or any combination of these 
properties are present. 

(ii) Let ru be denoted (table 11): 

Table 11 

and similarly for the other forms in Table 5. Suppose the equation (1.1) with the ru of 
table 11 satisfies the criteria of the theorem, then the r-equation is equivalent to 

(-iB:'aw + m)4' ' ) (x)  = O. (4.1) 

The {PE)} may again be a reducible set. If it is, then equation (4.1) automatically 
satisfies the criteria of the theorem (since the r-equation does). Therefore, the p"' 
equation is equivalent to a simpler equation 
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where (table 12): 

Table 12 

One can apply this theorem repeatedly until, after 1 steps, one arrives at (-i@:’a” + 
m)c$(’) = 0, where {p:’} is an irreducible set. In this way one sees that r-equations 
satisfying the criteria of the theorem are equivalent to irreducible @“’-equations derived 
from the r-equations and representing the equation formed from the irreducible core of 
the P-matrices. 

Now consider the external field interactions of the reducible wave equations that 
have T,, as in table 5 and where det(No-I)  # 0 in the free case. This includes the 
equations satisfying the conditions of the theorem. Assume that the external field is 
constructed from Lorentz tensors built up as products of the I?,, matrices contracted 
over the external potential. Let 

(4.2) 

denote such external fields, where r is the tensor constructed from the T, matrices and 
f ( x )  symbolises the external potentials (Glass 1971). For example r could symbolize 
rw, and f ( x )  could symbolise A,  (x) the external electromagnetic field potential, then 
B ( x )  = - e r , A @  ( x )  (e  is the charge of the particle)-this would be minimal coupling. As 
another example r could symbolize e r [ , r v 1  and f ( x )  could symbolise F ” ” ( x )  so that 
B ( x )  = eTr,T,p”””(x) = e ( r , T ,  - r , r , ) F ” ” ( x ) ,  where F,,(x) = a l , A U l ( x ) .  

B ( x )  = wr, f ( x  )I 

In the case of (4.21, B ( x )  has the forms: 

Table 13 

where ( a )  corresponds to r, in the form (3. la) ,  ( b )  for rw in table 5 ( b )  and (c) for r, in 
table 5 ( c ) .  

Consider case (a ) ,  and note that the same arguments will apply to cases ( b )  and ( c ) :  
(table 14) 

Table 14 

(-ip . a + m + a ( x ) ) @ ( x )  -t (-2. a + b ( x ) ) n ( x )  = 0 

[-iN. a + m + c ( x ) ] n ( x )  = 0 
(4.3) 
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Now two things can happen, either 
(4.4a) 

(4.4b) 

From the properties of the free equation we know that det(-iN. a + m )  = m“ # 0. 
Now if ( 4 . 6 ~ )  holds then n ( x )  = 0 and (4.5) is: 

(4.5) 

and a ( x )  =BE@, f ( x ) ] ,  i.e. a ( x )  is the same type of an interaction of the p-equation as 
B[T, f ( x ) ]  = B ( x )  was for the r-equation. For example if B ( x )  = - e r , A ” ( x )  then 
a ( x )  = - e p r A ’ ( x ) .  Similarly c ( x )  = B[N, f ( x ) ] .  On the other hand if (4.6b) holds then 
n ( x )  has non-zero solutions. In that case some components of n ( x )  become indepen- 
dent components. Since @ ( x )  contains the set of components that describe the particle 
under consideration, and @ ( x )  determine the spin of the particle, this form, (4.66) may 
in general lead to inconsistencies in the description of the physical system by the 
r-equation. Therefore if one requires that the components of the r-equation that are 
independent in the free case remain independent in the interacting case, and no new 
independent components arise in the external field, then one would have to discard 
equations and/or interactions that satisfy (4.4b). For equations that satisfy the condi- 
tions of the theorem these arguments apply to each step I, in the reduction of the 
r-equation to the irreducible p”’ equation. 

(a) det(-iN . a + m + c ( x ) )  # 0 

(b) det(-iN. a + m  + c ( x ) ) = O .  

or 

[-ip . a  + m + a  ( x ) ] @ ( x )  = 0 

One may summarise these conclusions as follows: 
(i) all equations in C ( R )  have T r  in one of the forms of table 5 .  If det(-iN. a +  

m )  = m“ # 0, then the r-equation is equivalent to a simpler p-equation. These r- 
equations are in C(R, E )  

(ii) in case the r-equation in C ( R )  describes a unique mass m, and a unique spin s 
with 2(2s + 1) independent components then the r-equation is necessarily equivalent to 
an irreducible p‘’)-equation; and thus such equations are also in C(R, E ) .  

(iii) If the allowed external field interactions are those that ( a )  have the form: 
B ( x ) = B [ T , f ( x ) ]  and (6) the B ( x )  creates no new independent components in the 
r-equation then the r-equation in the external field B [ r , f ( x ) ]  is equivalent to the 
p-equation in the same type of an interaction B [ p , f ( x ) ] .  For the special equations 
satisfying the criteria of the theorem all the external field interactions of the r-equation 
(of the above form) are completely described by the same interactions of the irreducible 
equation. 

It may happen that for a given equation no external field interactions may satisfy 
( 4 . 4 ~ ) .  Alternatively there is an entire subclass of equations in C(R,  E )  where every 
interaction B [ r ,  f ( x ) ]  satisfies (4.4a)-this subclass includes some equations that satisfy 
the conditions of the theorem and also some that do not. Suppose that No is either 
upper triangular or lower triangular in SL(2, C )  block form, then by Lorentz covariance 
so is N,. Such equations are called barnacled (Khalil 1974, 1978). Proving that an 
equation is barnacled also proves that it is in C(R,  E ) ,  because here [ N .  a ]  is always 
nilpotent. 

Now in interactions of the form B [ r ,  f ( x ) ] ,  c ( x )  = B[N,  f ( x ) ]  (see table 13). Since 
the matrix c ( x )  is constructed from finite ‘products’ of N,, contracted over the external 
fields, it too is upper or lower triangular in SL(2, C) block form (depending on whether 
N, is upper or lower triangular). It then follows that [-iN. a + c ( x ) ]  is nilpotent: 

[ N .  a]’ = o+[-iN. a + c ( x ) ] ’  = 0. 
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Therefore det[-iN. a+c(x)  + m ]  = det[-iN. a +  m ]  = m" # 0. It follows that for such 
r-equations, an external field B[T, f ( x ) ] ,  can never create new independent 
components. 

Consider a simple interaction illustrating the above discussion-minimal coupling. 
In general if [N. a]' = 0, the N, satisfy the algebra: 

N,, . . . N,, = 0 
d W 1  ... ,'I) 

(4.6) 

where the sum is over a(p l  . . . pI ) ,  all permutations of p1 . . . pI indices. The barnacled 
equations satisfy the subalgebra of (4.6). 

N,, . . . N,, = 0 (4.7) 
so not only is (N. a)' = 0 but by contracting DW1 . , , D"' with (4.7) so is (N. D)' = 0, 
where D, = a, -ieA,(x). On the other hand, in an equation where (4.7) is not satisfied 
then in general ( N .  D)" # 0 where n is any integer even though (N. a)'  = 0. In such a 
case det(-iN. D + m )  is zero for some values of the external field. Section 5 provides 
two simple examples illustrating this situation. 

5. Two examples 

Table 15 

ro = 

I} (1 2 > 2 )  1 

0 

r, = L, iN,l (5 .2 )  
where Ni are the generators of the boosts for the representation A --* T(A) of SL(2, C). 
A is any complex number. 

One writes the relativistic wave equations 

(-ir,(e)# + m)+(x) = 0 (5.3) 
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where E = 0 or E = 1, which gives two physically different equations. When E = 0 the 
r-equation is a rather simple example of a barnacled equation. In either case the 
equation describes a unique spin one and mass m, and it has 2(2s + 1) = 6 independent 
components. Therefore, according to the theorem (6.3) is equivalent to 

(-i@,d" + m ) 4 ( x )  = 0 

w(x,  E )  = 0 

where (table 16) 

Table 16 

P O  = 

and 

(5.4) 

PI  = [PO,  N I  

N: are the generators of the boosts for A + ( l , O ) ( A )  0 (i, $)(A). 

the same @-equation (5.4) in the free case. 

is upper triangular in SL(2, C) block form, so is N,(E  = 0), hence 

One can check directly that in either case ( E  = 0, or 1)  the r(E)-equation reduces to 

Suppose one introduces minimal coupling into equation (5.3). Now since NO(€ = 0) 

[N(E = 0 ) .  D]* = 0 

and thus det[-iN(c = 0) . D + m ]  = m l 5  # 0, where D, = 8, - ieA,(x) .  Therefore 
( - i r ( E  = 0 ) .  D + m)*(x) = 0 is equivalent to (-ip . D + m ) @ ( x )  = 0. In the case E = 1, 
[ N ( E  = 1) . d]' = 0, but [ N ( E  = 1) . D ]  is not nilpotent, and thus det[-iN(E = 1) . D + m ]  
cannot in general be non-zero. 

6. Remarks 

It has been shown that if we consider unique mass m, spin s equations, with 2(2s + 1) 
independent components, that belong to C ( r )  then there is no gain in considering the 
r-equations over the irreducible @'"-equations derived from the r-equations provided 
that the interactions one is interested in are of the type discussed in the previous section. 
Theories based on the r-equations are then physically indistinguishable from theories 
based on the @"'-equation. The r- and the @'"-equations predict the same magnetic 
moment for the particle described by these equations in minimal coupling interaction 
@ ( x )  = er ,A"(x) .  Similarly, in the analysis of the propagation of waves, the Velo- 
Zwanziger type of pathology can occur in the r-equation if and only if it occurs in the 
P'"-equation (Capri 1972, Amar and Dozzio 1972, Khalil 1976, 1977). 
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In equation (2.1) when ai>l for some j ,  it is very easy to end up with a barnacled 
equation without realising it (Khalil 1974, 1978). In the case the theories obtained are 
equivalent to simpler theories and for example the sixteen component spin-; Capri 
equation (Capri 1972, Amar and Dozzio 1972, Khalil 1977) cannot have a magnetic 
moment different from that for the Dirac particle, because it is a barnacled Dirac 
equation. 

Lastly, reducible equations allow invariant interactions B ( x )  that cannot be expres- 
sed in terms of tensors cpnstructed from the r,-matrices contracted over the external 
potentials or B ( x )  # B[T, f(x)]. In such interactions, it is possible that a given inter- 
action of the r-equation, if it does not create new independent components may lead to 
a different interaction of the P-equation, however, in principle one still does not obtain 
anything new by considering the more complex r-equation over the P-equation, and 
the physical interpretation of the interaction becomes difficult. 

The only kind of reducible equations that have not been considered here are those in 
the class C(-E, R ) .  These equations do not have the unusually nice properties of 
equations in C(E) ,  and theories with these equations will in general not be equivalent to 
theories with irreducible equations. According to the main result of this study, these 
theories have either more than 2(2s + 1) independent components (if they describe 
unique spin) as for example in the Hurley equations with an 7)-matrix, or they describe 
multiple masses, or spins, or some combination of these properties. Equations in these 
categories have their own difficulties. If the equation has only 2(2s + 1) independent 
components then it cannot describe multi-masses and/or multi-spins. 

It seems that if there are any physically consistent Dirac like (equation 1.1) theories 
for spin >1, they would have to come from the realm of irreducible equations. Also if 
one wants to prove a general theorem about the impossibility of this formalism leading 
to consistent interacting of higher spin fields, one may restrict attention to the smaller 
subclasses of irreducible wave equations. This is not to imply that reducible equations 
will yield absolutely nothing of physical use. For example, if non-standard interactions 
where B ( x )  is not made up of T,’s contracted over external potentials can be given 
physical meanings, then reducible equations would contain more physics than their 
irreducible counterparts. In other words, the extra structure that reducible equations 
have is not relevant to the resolution of the physical difficulties and needs that the 
present state of affairs demands. It should also be noted that the very large number of 
wave equations that become available under the formal constructive approach taken in 
equations (1.1) is significantly reduced by the results of this study. 
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